1,185 research outputs found

    Detection of anatomical structures in medical datasets

    Get PDF
    Detection and localisation of anatomical structures is extremely helpful for many image analysis algorithms. This thesis is concerned with the automatic identification of landmark points, anatomical regions and vessel centre lines in three-dimensional medical datasets. We examine how machine learning and atlas-based ideas may be combined to produce efficient, context-aware algorithms. For the problem of anatomical landmark detection, we develop an analog to the idea of autocontext, termed atlas location autocontext, whereby spatial context is iteratively learnt by the machine learning algorithm as part of a feedback loop. We then extend our anatomical landmark detection algorithm from Computed Tomography to Magnetic Resonance images, using image features based on histograms of oriented gradients. A cross-modality landmark detector is demonstrated using unsigned gradient orientations. The problem of brain parcellation is approached by independently training a random forest and a multi-atlas segmentation algorithm, then combining them by a simple Bayesian product operation. It is shown that, given classifiers providing complementary information, the hybrid classifier provides a superior result. The Bayesian product method of combination outperforms simple averaging where the classifiers are sufficiently independent. Finally, we present a system for identifying and tracking major arteries in Magnetic Resonance Angiography datasets, using automatically detected vascular landmarks to seed the tracking. Knowledge of individual vessel characteristics is employed to guide the tracking algorithm by two means. Firstly, the data is pre-processed using a top-hat transform of size corresponding to the vessel diameter. Secondly, a vascular atlas is generated to inform the cost function employed in the minimum path algorithm. Fully automatic tracking of the major arteries of the body is satisfactorily demonstrated

    Semi-supervised Meta-learning with Disentanglement for Domain-generalised Medical Image Segmentation

    Get PDF
    Generalising deep models to new data from new centres (termed here domains) remains a challenge. This is largely attributed to shifts in data statistics (domain shifts) between source and unseen domains. Recently, gradient-based meta-learning approaches where the training data are split into meta-train and meta-test sets to simulate and handle the domain shifts during training have shown improved generalisation performance. However, the current fully supervised meta-learning approaches are not scalable for medical image segmentation, where large effort is required to create pixel-wise annotations. Meanwhile, in a low data regime, the simulated domain shifts may not approximate the true domain shifts well across source and unseen domains. To address this problem, we propose a novel semi-supervised meta-learning framework with disentanglement. We explicitly model the representations related to domain shifts. Disentangling the representations and combining them to reconstruct the input image allows unlabeled data to be used to better approximate the true domain shifts for meta-learning. Hence, the model can achieve better generalisation performance, especially when there is a limited amount of labeled data. Experiments show that the proposed method is robust on different segmentation tasks and achieves state-of-the-art generalisation performance on two public benchmarks.Comment: Accepted by MICCAI 202

    Compositional Representation Learning for Brain Tumour Segmentation

    Full text link
    For brain tumour segmentation, deep learning models can achieve human expert-level performance given a large amount of data and pixel-level annotations. However, the expensive exercise of obtaining pixel-level annotations for large amounts of data is not always feasible, and performance is often heavily reduced in a low-annotated data regime. To tackle this challenge, we adapt a mixed supervision framework, vMFNet, to learn robust compositional representations using unsupervised learning and weak supervision alongside non-exhaustive pixel-level pathology labels. In particular, we use the BraTS dataset to simulate a collection of 2-point expert pathology annotations indicating the top and bottom slice of the tumour (or tumour sub-regions: peritumoural edema, GD-enhancing tumour, and the necrotic / non-enhancing tumour) in each MRI volume, from which weak image-level labels that indicate the presence or absence of the tumour (or the tumour sub-regions) in the image are constructed. Then, vMFNet models the encoded image features with von-Mises-Fisher (vMF) distributions, via learnable and compositional vMF kernels which capture information about structures in the images. We show that good tumour segmentation performance can be achieved with a large amount of weakly labelled data but only a small amount of fully-annotated data. Interestingly, emergent learning of anatomical structures occurs in the compositional representation even given only supervision relating to pathology (tumour).Comment: Accepted by DART workshop, MICCAI 202

    Learning Disentangled Representations in the Imaging Domain

    Full text link
    Disentangled representation learning has been proposed as an approach to learning general representations even in the absence of, or with limited, supervision. A good general representation can be fine-tuned for new target tasks using modest amounts of data, or used directly in unseen domains achieving remarkable performance in the corresponding task. This alleviation of the data and annotation requirements offers tantalising prospects for applications in computer vision and healthcare. In this tutorial paper, we motivate the need for disentangled representations, present key theory, and detail practical building blocks and criteria for learning such representations. We discuss applications in medical imaging and computer vision emphasising choices made in exemplar key works. We conclude by presenting remaining challenges and opportunities.Comment: Submitted. This paper follows a tutorial style but also surveys a considerable (more than 200 citations) number of work

    Teacher-Student chain for efficient semi-supervised histology image classification

    Get PDF
    Deep learning shows great potential for the domain of digital pathology. An automated digital pathology system could serve as a second reader, perform initial triage in large screening studies, or assist in reporting. However, it is expensive to exhaustively annotate large histology image databases, since medical specialists are a scarce resource. In this paper, we apply the semi-supervised teacher-student knowledge distillation technique proposed by Yalniz et al. (2019) to the task of quantifying prognostic features in colorectal cancer. We obtain accuracy improvements through extending this approach to a chain of students, where each student's predictions are used to train the next student i.e. the student becomes the teacher. Using the chain approach, and only 0.5% labelled data (the remaining 99.5% in the unlabelled pool), we match the accuracy of training on 100% labelled data. At lower percentages of labelled data, similar gains in accuracy are seen, allowing some recovery of accuracy even from a poor initial choice of labelled training set. In conclusion, this approach shows promise for reducing the annotation burden, thus increasing the affordability of automated digital pathology systems.Comment: AI for Affordable Healthcare (AI4AH) workshop at ICLR 202

    Controllable Chest X-Ray Report Generation from Longitudinal Representations

    Full text link
    Radiology reports are detailed text descriptions of the content of medical scans. Each report describes the presence/absence and location of relevant clinical findings, commonly including comparison with prior exams of the same patient to describe how they evolved. Radiology reporting is a time-consuming process, and scan results are often subject to delays. One strategy to speed up reporting is to integrate automated reporting systems, however clinical deployment requires high accuracy and interpretability. Previous approaches to automated radiology reporting generally do not provide the prior study as input, precluding comparison which is required for clinical accuracy in some types of scans, and offer only unreliable methods of interpretability. Therefore, leveraging an existing visual input format of anatomical tokens, we introduce two novel aspects: (1) longitudinal representation learning -- we input the prior scan as an additional input, proposing a method to align, concatenate and fuse the current and prior visual information into a joint longitudinal representation which can be provided to the multimodal report generation model; (2) sentence-anatomy dropout -- a training strategy for controllability in which the report generator model is trained to predict only sentences from the original report which correspond to the subset of anatomical regions given as input. We show through in-depth experiments on the MIMIC-CXR dataset how the proposed approach achieves state-of-the-art results while enabling anatomy-wise controllable report generation.Comment: Accepted to the Findings of EMNLP 202

    Automated clinical coding using off-the-shelf large language models

    Full text link
    The task of assigning diagnostic ICD codes to patient hospital admissions is typically performed by expert human coders. Efforts towards automated ICD coding are dominated by supervised deep learning models. However, difficulties in learning to predict the large number of rare codes remain a barrier to adoption in clinical practice. In this work, we leverage off-the-shelf pre-trained generative large language models (LLMs) to develop a practical solution that is suitable for zero-shot and few-shot code assignment, with no need for further task-specific training. Unsupervised pre-training alone does not guarantee precise knowledge of the ICD ontology and specialist clinical coding task, therefore we frame the task as information extraction, providing a description of each coded concept and asking the model to retrieve related mentions. For efficiency, rather than iterating over all codes, we leverage the hierarchical nature of the ICD ontology to sparsely search for relevant codes.Comment: Accepted to the NeurIPS 2023 workshop Deep Generative Models For Health (DGM4H). 9 pages, 3 figure

    Compositionally Equivariant Representation Learning

    Full text link
    Deep learning models often need sufficient supervision (i.e. labelled data) in order to be trained effectively. By contrast, humans can swiftly learn to identify important anatomy in medical images like MRI and CT scans, with minimal guidance. This recognition capability easily generalises to new images from different medical facilities and to new tasks in different settings. This rapid and generalisable learning ability is largely due to the compositional structure of image patterns in the human brain, which are not well represented in current medical models. In this paper, we study the utilisation of compositionality in learning more interpretable and generalisable representations for medical image segmentation. Overall, we propose that the underlying generative factors that are used to generate the medical images satisfy compositional equivariance property, where each factor is compositional (e.g. corresponds to the structures in human anatomy) and also equivariant to the task. Hence, a good representation that approximates well the ground truth factor has to be compositionally equivariant. By modelling the compositional representations with learnable von-Mises-Fisher (vMF) kernels, we explore how different design and learning biases can be used to enforce the representations to be more compositionally equivariant under un-, weakly-, and semi-supervised settings. Extensive results show that our methods achieve the best performance over several strong baselines on the task of semi-supervised domain-generalised medical image segmentation. Code will be made publicly available upon acceptance at https://github.com/vios-s.Comment: Submitted. 10 pages. arXiv admin note: text overlap with arXiv:2206.1453
    corecore